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Fig. 6. Case of an impinging unlimited plane wave: normalized field

amplitude and phase, plotted versus z, at several frames.
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Fig. 7. The field at the 200th frame (solid lines) and the iterative field
of the open-resonator theory (dashed lines) for the same case as
Fig. 6. '

plane truncated wavefront, emitted at a distance L = 100 \ before
the first frame. Fig. 4 shows the field distribution at a number of
frames, plotted versus z (for symmetry reasons, the field is plotted
only for z > 0). Fig. 5 shows the quasi-stationary field distribution,
which is reached after about 100 cells, compared with the iterative
field distribution of the equivalent open resonator theory [6], [7].

Figs. 6 and 7 refer to an impinging plane wave. Dashed lines
represent, as hefore, the iterative field.

Fig. 8 shows the quantities ®,/®; and ®,/®,_1, plotted versus n,
where

a4l
&, = / | va (20) Py,
—(a+)

represents the power flux through the nth frame.

Our treatment of open-beam waveguides has a general character,
so that it can be applied not only to periodic but also to nonperiodic
sequences of optical elements. Thus it is suitable for the study of the
effects of errors in the position (both in the longitudinal and in the
transverse senses) of the elements, and of differences in the optical
properties of them, as well as of possible bends in the axis of the beam
waveguide (the planes =, are not necessarily parallel to one another).
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Fig. 8. The ratio ®,/Ppn_10 (solid lines) and the ratio @,/P1 (dashed
lines), plotted versus n, when the beam waveguide is illuminated by
a truncated plane wave (top), the iterative field of open resonator
theory (center), and an unlimited plane wave (bottom).

In addition, it may be generalized so as to take into account the back-
scattering of the optical elements, which was neglected in (5).
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Application of the Beam Mode Expansion to the Analysis
of Noise Reduction Structure

KAZUMASA TANAKA, MITSURU TANAKA, anp
OTOZO FUKUMITSU

Abstract—The beam mode expansion method used to discuss the
diffraction problem by an aperture is applied to the analysis of the
noise reduction structure consisting of two aperture stops. The
incident field is a fundamental wave beam whose amplitude dis-
tribution is Gaussian. The transmitted field through the structure
can be represented as a sum of beam mode functions and is regarded
as a signal. The noise which is originated frem the spontaneous

Manuscript received December 19, 1974; revised March 20, 1975,

K. Tanaka is with the Department of Electrical Engineering, Naga-
saki University, Nagasaki, Japan.

M., Tanaka and O. Fukumitsu are with the Department of Computer
Science and Communication Engineering, Kyushu University, Fukuoka,
Japan.



596

emission is added to the incident Gaussian wave beam. The signal-
to-noise ratio (SNR) in the output is discussed and optimum con-
ditions are obtained numerically.

I. INTRODUCTION

The analysis of an optical structure which includes elements of
finite aperture is treated by the Fresnel integral. For complicated
systems, however, the numerical integration is very difficult.

In the case of wave beam transmission, the beam mode expansion
method might be convenient for the analysis of such systems.

In a previous paper [1], a system of two aperture stops is analyzed
for an incident field with a Gaussian field distribution by using the
beam mode expansion method and the conditions which maximize
the power of the fundamental beam mode in the output are obtained.
These conditions coincide with those obtained to maximize the out-
put power of this system for a prolate spheroidal-wave distribution
21

In some practical cases, however, the transmitted field which in-
cludes not only the fundamental beam mode but also the higher modes
might be regarded as a signal. And the noise originated from the
spontaneous emission of atoms is added to the signal in laser ampli-
fiers. ’

In this short paper, the SNR in the output is discussed and the
optimum incidence conditions which give the maximum SNR for
some aperture configurations are obtained numerically. A detector
collects the whole field through the system. The theory is based on
the scalar paraxial approximation. ’

" The calculations are carried out for circular geometries and the
first ten higher modes are considered.

II. SIGNAL, NOISE, AND THE SNR
IN THE OUTPUT

The diffraction field U, (r,6,2) from an aperture for an incident
wave beam v, (r,6,2) with a Laguerre—Gaussian field distribution
[3] which has the beam waist at 2 = — 2z, where its spot size is
w,, is obtained by using the Kirchhoff~Huygens formula. The spot
size of a wave beam is defined by the radius at which the exponential
term in the field distribution falls to ¢~ This field is then expanded
into a sum of beam mode functions, which have the same beam
parameters as the incident wave beam, as follows:

Umn (7’,0!2) = Z Cmn’;’:‘hﬁﬁ(no’z)- (1
75,0
The expansion coefficient Cm,™* is, by using the orthonormality
of {¢ma}, given by [4]
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(’;).’L = m), Cmnﬁﬂ = 0, (77'/ = m) (2)
where
_ 2z +2) v
b= kwse ' "= we (1.4 £?2)12 ®

k = 2r/A (A\:wavelength) is the wavenumber of the field, and o
is the radius of the aperture.

By using this beam mode expansion method we can easily repre-
sent the transmitted field U (r,6,2) from the system of two aperture
stops in Fig. 1 as a sum of the beam mode functions as follows:

U(T,o;z) = i i Cmn(l)m;icmﬁ(z)m"ﬁmt(7':0;2) 4)
]
where
L n! 1/2 7l 1/2 3
Cpp I = ((n gy ((ﬁ Tl exp [ (2rn — 27) tan—1%,]
n & (—1)7re(p + g + m)! n+m\ [i+m
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{1 —exp (—natad) 2 (s~ {nilad)?], (f=12) ()
s=0
2 _2d+4aw) V2 .
&0 = Fwat’ 20 = Tws? s N0 = we(l + Eiﬂ)ﬂz’ (= 1,2) (6)

and ay,a: are the radii of the apertures A,,As, respectively. There-
fore, the power transmission coefficient of the system which is the
ratio of the transmitted power S to the incident power S, for the
fundamental mode (m = n = 0) incidence with a Gaussian trans-
verse field distribution is given by

d L
7= 2| 2 Cog®0a(z et 2. (N
=0 =0 ‘

The transmitted power S is, in this short paper, regarded as a signal,
The transmitted noise through the system is given by [2]

N = @N, (8)
.”.2a12a22
=T ©

where N, is the amount of “‘noise per mode,”’ that is, the amount of
noise radiated into a solid angle, and a,/d << 1,a2/d < 1 are assumed.
The parameter @ is called the acceptance factor of the system. In
obtaining the transmitted noise, a polarizer is used to reduce it by
a factor of two. The polarizer has no effect on the signal whose
polarization is linear.
The SNR in the output is, therefore, given by

=12 (10)

The ratio Sg/Ny is the ideal value of the SNR.
In the next section, the numerical computations of »/@ are carried
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stops. The acceptance factor @ of this structure is given by @ =
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out and the optimum incidence conditions are obtained for given
aperture configurations.

III. NUMERICAL COMPUTATIONS

In calculating the ratio +/@, we use the first ten higher modes in
the series of (7). Increasing the number of mode has little effect on
the results except when the acceptance factor @ is very small.

Tigs. 2 and 3 show the optimum incidence conditions which maxi-
mize the ratio +/@ for ay/a: = 1.0. The parameter s is given by
Be = (a102)Y2/w,. The dotted lines in these figures show the optimum
conditions obtained in [1] and [2].

From these figures, the optimum position of the beam waist
(—z,) and the smallest spot size (ws) of the incident wave beam are
obtained as follows:

(Wo/Bops = (2/kd)GY4/(Bs) ot
(—2s/d)ops = (kd/2) (ws/d)%op1( —£10) opte
Comparing the results obtained here with those in [1] and [2],

(11)

we can see that the optimum position of the beam waist (—2/d) opt is
closer to the first aperture A; than that in [1] and [2], and the
difference increases as @ becomes smaller. There is no such salient
difference in the case of the optimum spot size. This tendency holds
true for a; # as.

The maximum transmitted power and the ratio /@ are shown in
Fig. 4. The most noteworthy point in Fig. 4 is that the maximum
transmitted power and the ratio =/@ are independent of the ratio
a1/a: and depend only upon the acceptance factor G.

In the figures presented here, the results for small values of G
are not shown. To obtain them, we must take into consideration
more higher modes. But when @ is very small, the transmitted signal
power is also very small. Therefore, systems with small G may have
little practical importance.

IV. CONCLUSIONS

The noise reduction structure consisting of two aperture stops in
laser amplifiers is analyzed by using the beam mode expansion
method.
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From the humerical results, we can see that the optimum position
of the beam waist of the inciderit wave beam is closer to the input
aperture than that obtained by Kogelnik and Yariv [2]. The dif-
ference between them increases as the a,cceptance factor becomes
smaller.

The maximum SNR in the output depends only upon the accept-
ance factor. The smaller the acceptance factor, the better the SNR.

This short paper gives one of the examples which show the useful-
ness of the beam mode expansion method. More complex systems,
such as those which include lenses, can be treated in the same
way.
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